Winner-Relaxing Self-Organizing Maps

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Winner-Relaxing Self-Organizing Maps

A new family of self-organizing maps, the Winner-Relaxing Kohonen Algorithm, is introduced as a generalization of a variant given by Kohonen in 1991. The magnification behaviour is calculated analytically. For the original variant a magnification exponent of 4/7 is derived; the generalized version allows to steer the magnification in the wide range from exponent 1/2 to 1 in the one-dimensional ...

متن کامل

Generalized Winner-Relaxing Kohonen Self-Organizing Feature Maps

We calculate analytically the magnification behaviour of a generalized family of self-organizing feature maps inspired by a variant introduced by Kohonen in 1991, denoted here as Winner Relaxing Kohonen algorithm, which is shown here to have a magnification exponent of 4/7. Motivated by the observation that a modification of the learning rule for the winner neuron influences the magnification l...

متن کامل

Multi - Winner Self - Organizing Maps by Reiner

Title of Dissertation: One-Shot Multi-Winner Self-Organizing Maps Reiner Schulz, Doctor of Philosophy, July 22, 2004 Dissertation directed by: Dr. James Reggia Department of Computer Science There exist two different approaches to self-organizing maps (SOMs). One approach, rooted in theoretical neuroscience, uses SOMs as computational models of biological cortex. The other approach, taken in co...

متن کامل

Winner-relaxing and winner-enhancing Kohonen maps: Maximal mutual information from enhancing the winner

The magnification behaviour of a generalized family of self-organizing feature maps, the Winner Relaxing and Winner Enhancing Kohonen algorithms is analyzed by the magnification law in the one-dimensional case, which can be obtained analytically. The Winner-Enhancing case allows to acheive a magnification exponent of one and therefore provides optimal mapping in the sense of information theory....

متن کامل

using game theory techniques in self-organizing maps training

شبکه خود سازمانده پرکاربردترین شبکه عصبی برای انجام خوشه بندی و کوانتیزه نمودن برداری است. از زمان معرفی این شبکه تاکنون، از این روش در مسائل مختلف در حوزه های گوناگون استفاده و توسعه ها و بهبودهای متعددی برای آن ارائه شده است. شبکه خودسازمانده از تعدادی سلول برای تخمین تابع توزیع الگوهای ورودی در فضای چندبعدی استفاده می کند. احتمال وجود سلول مرده مشکلی اساسی در الگوریتم شبکه خودسازمانده به حسا...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neural Computation

سال: 2005

ISSN: 0899-7667,1530-888X

DOI: 10.1162/0899766053491922